Home
Class 12
MATHS
" If "x=t log t" and "y=t^(t)" show that...

" If "x=t log t" and "y=t^(t)" show that "(dy)/(dx)=e^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

If x=sqrt(a^(sin^(-1)t)" and "y=sqrt(a^(cos^(-1)t) show that (dy)/(dx)=-(y)/(x) .

If x,=e^(cos2t) and y=e^(sin2t), prove that (dy)/(dx),=-(y log x)/(x log y)

If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

If x=e^(sin3t),y=e^(cos3t),"show that "(dy)/(dx)=-(ylogx)/(xlogy)

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y