Home
Class 12
PHYSICS
A ball of mass 1.00 kg is attached to a ...

A ball of mass 1.00 kg is attached to a loose string fixed to a ceiling. The ball is released from rest and falls 2.00 m, where the string suddenly stops it. Find the impulse on it from the string.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the impulse on a ball of mass 1.00 kg that falls 2.00 m before being stopped by a string, we can follow these steps: ### Step 1: Understand the situation The ball is released from rest and falls under the influence of gravity. When it falls 2.00 m, the string becomes taut and stops the ball. ### Step 2: Determine the initial and final velocities - **Initial velocity (u)**: Since the ball is released from rest, \( u = 0 \, \text{m/s} \). - **Final velocity (v)**: When the string stops the ball, the final velocity is \( v = 0 \, \text{m/s} \) at the moment of stopping. ### Step 3: Calculate the velocity just before the string stops the ball To find the velocity just before the string stops the ball, we can use the principle of conservation of energy. The potential energy lost by the ball is converted into kinetic energy. 1. **Potential energy (PE) lost**: \[ \Delta PE = mgh \] where: - \( m = 1.00 \, \text{kg} \) (mass of the ball) - \( g = 10 \, \text{m/s}^2 \) (acceleration due to gravity) - \( h = 2.00 \, \text{m} \) (height fallen) Thus, \[ \Delta PE = 1.00 \times 10 \times 2.00 = 20 \, \text{J} \] 2. **Kinetic energy (KE) just before the string stops the ball**: \[ KE = \frac{1}{2} mv^2 \] Setting the change in potential energy equal to the kinetic energy: \[ 20 = \frac{1}{2} \times 1.00 \times v^2 \] Solving for \( v^2 \): \[ 20 = 0.5 \times v^2 \implies v^2 = 40 \implies v = \sqrt{40} \approx 6.32 \, \text{m/s} \] ### Step 4: Calculate the impulse Impulse (\( I \)) is defined as the change in momentum, which can also be expressed as: \[ I = m \Delta v \] where \( \Delta v = v - u \). Since the ball comes to a stop, we have: - \( u = \sqrt{40} \, \text{m/s} \) - \( v = 0 \, \text{m/s} \) Thus, \[ \Delta v = 0 - \sqrt{40} = -\sqrt{40} \] Now substituting into the impulse formula: \[ I = m \Delta v = 1.00 \times (-\sqrt{40}) = -\sqrt{40} \, \text{kg m/s} \] The negative sign indicates that the impulse is in the opposite direction of the ball's initial motion. ### Step 5: Calculate the numerical value of the impulse \[ I \approx -6.32 \, \text{kg m/s} \] ### Final Answer The impulse on the ball from the string is approximately \( 6.32 \, \text{kg m/s} \) in the upward direction. ---
Promotional Banner

Topper's Solved these Questions

  • CENTER OF MASS

    RESNICK AND HALLIDAY|Exercise Practice Questions (Single Correct Choice )|47 Videos
  • CENTER OF MASS

    RESNICK AND HALLIDAY|Exercise Practice Questions (More than One Correct Choice)|5 Videos
  • CENTER OF MASS

    RESNICK AND HALLIDAY|Exercise Practice Questions (Integer )|4 Videos
  • CAPACITANCE

    RESNICK AND HALLIDAY|Exercise PRACTICE QUESTION (INTEGER TYPE)|3 Videos
  • CIRCUITS

    RESNICK AND HALLIDAY|Exercise Practice Questions (Integer Type)|3 Videos

Similar Questions

Explore conceptually related problems

A ball of mass 1 kg is attached to an inextensible string. The ball is released from the position shown in figure. Find the impulse imparted by the string to the ball immediately after the string becomes taut.

A ball of mass 1kg is attached to an inextensible string. The ball is released from the position shown in figure. Find the impulse imparted by the string to the ball immediately after the string becomes taut. (Take g=10m//s^2 )

A ball of mass m is attached to a string whose other end is fixed. The system is free to rotate in vertical plane. When the ball swings, no work is done on the ball by the tension in the string. Which of the following statement is the correct explanation?

A ball of mass 0.5 kg is attached to a light string of length 2m. The ball is whirled on la horizontal smooth surface is a circle of rdius 2 m as shown in fig. If the string can withstand tension up to 100 N, what is the maximum speed at which the bal can be whirled.

A ball of mass 0.6 kg attached to a light inextensible string rotates in a vertical circle of radius 0.75 m such that it has speed of 5 ms^(-1) when the string is horizontal. Tension in the string when it is horizontal on other side is (g = 10 ms^(-2)) .

Two massless string of length 5 m hang from the ceiling very near to each other as shown in the figure. Two balls A and B of masses 0.25kg and 0.5kg are attached to the string. The ball A is released from rest at a height 0.45m as shown in the figure. The collision between two balls is completely elastic. Immediately after the collision, the kinetic energy of ball B is 1 J The velocity of ball A just after the collision is

RESNICK AND HALLIDAY-CENTER OF MASS -Problems
  1. A 3.0kg block slides on a frictionless horizontal surface, first movin...

    Text Solution

    |

  2. In tae-kwon-do, a hand is slammed down onto a target at a speed of 13 ...

    Text Solution

    |

  3. A ball of mass 1.00 kg is attached to a loose string fixed to a ceilin...

    Text Solution

    |

  4. Jumping up before the elevator hits. After the cable snaps and the saf...

    Text Solution

    |

  5. Figure shows a 0.300 kg baseball just before and just after it collid...

    Text Solution

    |

  6. A 0.25 kg puck is initially stationary on an ice surface with negligib...

    Text Solution

    |

  7. A particle of unknown mass is acted upon by a force vecF=(100e^(-2t)ha...

    Text Solution

    |

  8. A man of mass m1 = 80 kg is standing on a platform of mass m2 = 20 kg ...

    Text Solution

    |

  9. A space vehicle is traveling at 4800 km/h relative to Earth when the e...

    Text Solution

    |

  10. A 15.0 kg package is moving at a speed of 10.0 m/s vertically upward a...

    Text Solution

    |

  11. In Fig. a stationary block explodes into two pieces L and R that slid...

    Text Solution

    |

  12. A 4.0 kg mess kit sliding on a frictionless surface explodes into two ...

    Text Solution

    |

  13. Particle A and particle B are held together with a compressed spring b...

    Text Solution

    |

  14. A bullet of mass 10 g strikes a ballistic pendulum of mass 2.0 kg. The...

    Text Solution

    |

  15. A 5.20 g bullet moving at 700 m/s strikes a 700 g wooden block at rest...

    Text Solution

    |

  16. A completely inelastic collision occurs between two balls of wet putty...

    Text Solution

    |

  17. Block A has a mass 3kg and is sliding on a rough horizontal surface wi...

    Text Solution

    |

  18. In the "before" part of Fig., car A (mass 1100 kg) is stopped at a tra...

    Text Solution

    |

  19. In Fig. , a ball of mass m = 60 g is shot with speed vi = 22 m/s into ...

    Text Solution

    |

  20. Two titanium spheres approach each other head-on with the same speed a...

    Text Solution

    |