Home
Class 12
MATHS
f(x)=(x^(4))/(4)-x^(3)-5x^(2)+24x+12...

f(x)=(x^(4))/(4)-x^(3)-5x^(2)+24x+12

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of values of x for which f(x)=3x^(4)-8x^(3)-6x^(2)+24x-12 is an increasing function is

Using the first derivative , find the extreme of the following functions : f(x) =x^(4)-8x^(3)+22x^(2)-24x +12,

Find the critical points and the intervals of increase and decrease for f(x)=3x^(4)-8x^(3)-6x^(2)+24x+7 .

Separate the intervals of monotonocity of the function: f(x)=3x^(4)-8x^(3)-6x^(2)+24x+7

Statement 1: The function f(x)=x^(4)-8x^(3)+22x^(2)-24x+21 is decreasing for every x in(-oo,1)uu(2,3) Statement 2:f(x) is increasing for x in(1,2)uu(3,oo) and has no point of inflection.

f(x)=3x^(4)-4x^(3)+6x^(2)-12x+12 decreases in

f(x)=x^(4)-8x^(3)+22x^(2)-24x+20 has minimum value at x =

If f(x) = 2x^(4) + 5x^(3) -7x^(2) - 4x + 3 then f(x -1) =

Examine for maxima and minima of the function f(x)=x^(4)-8x^(3)+22x^(2)-24x+8 .