Home
Class 11
MATHS
int(1/2)^(2)(1)/(x)sin(x-(1)/(x))dx=...

int_(1/2)^(2)(1)/(x)sin(x-(1)/(x))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_((1)/(2))^(2)(1)/(x)sin^(101)(x-(1)/(x))dx=

int(1)/(1-sin(x)/(2))dx

int_(0)^(2)((x-1)^(2)sin(x-1) dx)/((x-1)^(2)+cos(x-1))

int_(-1)^(1)(x^(2)+sin x)/(1+x^(2))dx=

Evaluate: int_(1)^(2)(1)/((x+1)(x+2))dx( ii) int_(1)^(2)(1)/(x(1+x^(2)))dx

int((1)/(cos^(2)x)-(1)/(sin^(2)x))dx

The value of int_(1//2)^(1) (2 x sin (1)/(x) - cos (1)/(x) ) dx is

int((1)/(sin^(2)x)+(x+1)/(x))dx

int_(0)^(1)(d)/(dx)["sin"^(-1)(2x)/(1+x^(2))]dx is equal to -

int(1)/(1-(sin x)/(2))dx