Home
Class 11
MATHS
If alpha and beta (alpha < beta ) are th...

If `alpha and beta (alpha < beta )` are the roots of the equation `x^2+bx+c=0` where `c < 0 < b` then (a) `0 < alpha < beta` (b) `alpha < 0 < beta^2 < alpha^2` (c) `alpha < beta < 0` (d) `alpha < 0 < alpha^2 < beta^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation 3x^(2) - 5x + 2 = 0 , find the value of (i) (alpha)/(beta) + (beta)/(alpha) (ii) alpha-beta (iii) (alpha^(2))/(beta) + (beta^(2))/(alpha)

If alpha and beta are the zeroes of the polynomial x^(2)+4x-77, then the quadratic polynomial whose zeroes are (alpha+2 beta)/(alpha+beta) and (2 alpha+beta)/(alpha+beta) can be equal to

If alpha and beta are the zeros of the quadratic polynomial f(x)=2x^(2)+bx+c ,then evaluate: a[(alpha^(2))/(beta)+(beta^(2))/(alpha)]+b[(alpha)/(beta)+(beta)/(alpha)]

If alpha ne beta, alpha^(2)=5 alpha-3, beta^(2)=5beta-3 , then the equation having (alpha)/(beta) and (beta)/(alpha) as its roots is

If the roots of x ^(4) -10 x ^(3) + 37 x ^(2) - 60 x + 36 =0 are alpha, alpha , beta, beta (alpha lt beta), then 2 alpha + 3 beta - 2 alpha beta=

If alpha and beta are roots of ax^(2) + bx + c = 0 , then find the value of a((alpha^(2) + beta^(2))/(beta alpha)) + b((alpha)/(beta) + (beta)/(alpha))

If alpha , beta are the roots of ax^2 + bx + c=0 then alpha beta ^(2) + alpha ^2 beta + alpha beta =