Home
Class 11
MATHS
If b<0, then the roots x1 and x2 of the ...

If `b<0`, then the roots `x_1` and `x_2` of the equation `2x^2+6x+b=0` satisfy the condition `(x_1/x_2) + (x_2/x_1) < k` where k is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[a,b],[-b,a]], B= [[-a, b],[-b, -a]] then find A+B

If A=[[a,b],[-b,a]], B= [[-a, b],[-b, -a]] then find A+B

If A and B are non-empty sets such that A sup B , then a) B' - A' = A-B b) B'-A' = B-A c) A'-B' = A - B d) A' cap B' = B- A

If A = [ (a , b) , (-b , a)] and B = [ (a , b),(b , a)] , find AB .

If A B=A and B A=B , where A and B are square matrices, then B^2=B and A^2=A (b) B^2!=B and A^2=A (c) A^2!=A , B^2=B (d) A^2!=A , B^2!=B

If a, b and c are three coplanar vectors. If a is not parallel to b, show that c=(|[c*a, a*b], [c*b, b*b]|a+|[a*a, c*a], [a*b, c*b]|b)/(|[a*a, a*b], [a*b, b*b]|) .

If a, b and c are three coplanar vectors. If a is not parallel to b, show that c=(|[c*a, a*b], [c*b, b*b]|a+|[a*a, c*a], [a*b, c*b]|b)/(|[a*a, a*b], [a*b, b*b]|) .

If a, b and c are three coplanar vectors. If a is not parallel to b, show that c=(|[c*a, a*b], [c*b, b*b]|a+|[a*a, c*a], [a*b, c*b]|b)/(|[a*a, a*b], [a*b, b*b]|) .

If A B=Aa n dB A=B , then a. A^2B=A^2 b. B^2A=B^2 c. A B A=A d. B A B=B

If A B=Aa n dB A=B , then a. A^2B=A^2 b. B^2A=B^2 c. A B A=A d. B A B=B