Home
Class 11
MATHS
tanalpha and tanbeta are roots of the e...

`tanalpha and tanbeta` are roots of the equation `x^2 + ax + b = 0`, then the value of `sin^2 (alpha+beta) + a sin (alpha+beta)*cos (alpha+beta) + b cos^2 (alpha+beta)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

If tan alpha and tan beta are the roots of the equation x^(2) +px + q = 0 , then the value of sin^(2) (alpha +beta) + p cos (alpha + beta) sin (alpha + beta) + q cos^(2) (alpha + beta) is

If tanalpha and tanbeta be the roots of the equation (x^2+px+q=0) then the value of the expression sin^2(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+qcos^2(alpha+beta) is

If tan alpha, tan beta are the roots of the equation x^(2)+px+q=0 then sin^(2) (alpha+ beta)+ p sin(alpha+ beta) (cos+beta) +q cos^(2)(alpha+ beta)=

2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=

If sin(theta+alpha)=a and sin(theta+beta)=b then cos2(alpha-beta)-4abcos(alpha-beta) is equal to

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=