Home
Class 12
MATHS
lim(n->oo)n/((n !)^(1 /n))...

`lim_(n->oo)n/((n !)^(1 /n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_ (n rarr oo) ((n!) ^ ((1) / (n))) / (n) equals

Evaluate: (lim)_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(((n)/(n))^(n)+((n-1)/(n))^(n)+......+((1)/(n))^(n)) equals

Evaluate the following limit: lim_(nto oo)[(n!)/(n^(n))]^(1//n)