Home
Class 12
MATHS
Find the blanks. (i) If x=a cos^(3)thet...

Find the blanks.
(i) If `x=a cos^(3)theta,y=b sin^(3)theta` then `((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P)`
(ii) if `x=a sec theta cos phi,y=b sec theta sin phi` and `z=c tan theta` then `(x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q)`
(iii) If `cos A+cos^(2)A=1`,then `sin^(2)A+sin^(4)A=ul(R)`

Promotional Banner

Similar Questions

Explore conceptually related problems

x=a cos^(3)theta,y=b sin^(3)theta : ((x)/(a))^(2/3)+((y)/(b))^(2/3)=1

If x=a sec theta cos varphi,quad y=b sec theta sin varphi and z=c tan theta, show that (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=1

If x = a sec theta cos phi, y = b sec thetasin phi and z = c tan theta , then the value of x^2/a^2 + y^2/b^2 -z^2 /c^2 is

If x = a sec theta cos phi, y = b sec theta sin phi, z = c tan theta , then, the value of x^2 /a^2 + y^2/b^2 -z^2/c^2 is :

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

x=b sin^(2)theta & y=a cos^(2)theta

If x = a cos ^(3) theta and y = b sin ^(3) theta , then the value of ((x)/(a))^(2//3) + ((y)/(b))^(2//3)

If x = rsin theta*cos phi , y = rsin theta*sin phi and z = rcos theta then prove that x^2 + y^2 + z^2 = r^2

If x = r cos theta cos phi, y = r cos theta sin phiz = r sin theta, then x ^ (2) + y ^ (2) + z ^ (2) = (i) r ^ (2) (ii ) y ^ (2) (iii) x ^ (2) (iv) z ^ (2)

If cos theta+cos phi=a and sin theta - sin phi=b , then: 2cos(theta + phi) =