Home
Class 11
PHYSICS
For tow vectros vec A and vec B | ve...

For tow vectros ` vec A` and vec B`
` | vec A + vec B| = | vec A- vec B|` is always true when.

Promotional Banner

Similar Questions

Explore conceptually related problems

For two vectors vec A and vec B | vec A + vec B| = | vec A- vec B| is always true when.

For any two vectors vec a and vec b write when |vec a+vec b|=|vec a-vec b| holds.

if | vec a | = | vec b | = | vec a + vec b | = 1 then | vec a-vec b |

For any two vectors vec a and vec b, we always have |vec a+ vec b|<=|vec a|+|vec b|

For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

For the vector vec(a) and vec (b) if |vec(a) + vec(b)| = |vec(a) - vec(b)| , show that vec(a) and vec (b) are perpendicular

For non-zero vectors vec(a) and vec(b), " if " |vec(a) + vec(b)| lt |vec(a) - vec(b)| , then vec(a) and vec(b) are-

For any two vectors vec a and vec b , show that : ( vec a+ vec b)dot( vec a- vec b)=0, when | vec a|=| vec b|dot

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]