Home
Class 12
MATHS
if i=sqrt-1, the number of values of i^n...

if `i=sqrt-1`, the number of values of `i^n+i^-n` for different `n epsilon I`, is:

Promotional Banner

Similar Questions

Explore conceptually related problems

if i=sqrt(-)1, the number of values of i^(n)+i^(-n) for different n varepsilon I, is:

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

The value of i^n + i^-n

If i = sqrt(-1) , then how many values does i^(-2n) have for different n in Z ?

If i=sqrt(-1) , then {i^(n)+i^(-n), n in Z} is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to