Similar Questions
Explore conceptually related problems
Recommended Questions
- 1*2*3+2*3*4+...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4 forall n in N.
Text Solution
|
- For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)...
Text Solution
|
- Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)
Text Solution
|
- 1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N
Text Solution
|
- 1.2.3+2.3.4+3.4.5+……..+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4
Text Solution
|
- |{:(n!,(n+1)!,(n+2)!),((n+1)!,(n+2)!,(n+3)!),((n+2)!,(n+3)!,(n+4)!):}|...
Text Solution
|
- 1+2+3+............+n=(n(n+1))/2 forall n in N.
Text Solution
|
- 1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.
Text Solution
|
- 1.2+2.3+3.4+…………..+n(n+1)=n/3(n+1)(n+2) forall n in N.
Text Solution
|