Home
Class 11
MATHS
If alpha, beta are the roots of x^2-x+1=...

If `alpha, beta` are the roots of `x^2-x+1=0`, then `alpha^5+beta^5` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^(2)-2x+4=0, then alpha^(5)+beta^(5) is :

Assertion (A): If alpha, beta are the roots of x^(2)-x+1=0 , then alpha^(5)+beta^(5)=1 Reason (R) : The roots of x^(2)-x+1=0 are omega,omega^(2) .

If alpha , beta are the roots of x^2-2x + 4 =-0 then alpha ^5 + beta ^5 =

If alpha,beta are the roots of x^(2)-2x+4=0 then alpha^(5)+beta^(5)=

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha , beta are the roots of x^2 +x+1=0 then alpha // beta + beta // alpha =

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=