Home
Class 12
MATHS
[" For positive integers "k=1,2,3,.........

[" For positive integers "k=1,2,3,......,n," let "S_(k)" denotes the area of "/_AOB_(k)" (Where 'O' is origin) such "],[/_AOB_(k)=(k pi)/(2n),OA=1" and "OB_(k)=k" .The value of the "lim_(n rarr oo)(1)/(n^(2))sum_(k=1)^(n)S_(k)" is "],[[" (A) "(2)/(pi^(2))," (B) "(4)/(pi^(2))," (C) "(8)/(pi^(2))," (D) "(1)/(2 pi^(2))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

For positive integers k=1,2,3,....n, let S_(k) denotes the area of /_AOB_(k) such that /_AOB_(k)=(k pi)/(2n),OA=1 and OB_(k)=k The value of the lim_(n rarr oo)(1)/(n^(2))sum_(k-1)^(n)S_(k) is

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

For positive integers k=1,2,3,....n,, let S_k denotes the area of triangleAOB_k such that angleAOB_k=(kpi)/(2n) , OA=1 and OB_k=k The value of the lim_(n->oo)1/n^2sum_(k-1)^nS_k is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))