Home
Class 12
MATHS
sin(tan^(-1)e^(-x))...

`sin(tan^(-1)e^(-x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx : y = sin(tan^-1e^-x)

tan(sin^(-1)x)

Value of sin{tan^(-1)x+tan^(-1)((1)/(x))}_( is )

If f(x)=tan(tan^(-1)x^(2))+sin(sin^(-1)x) then

The value of the definite integral (1)/(pi)int_((pi)/(2))^((5 pi)/(2))(e^(tan^(-1)(sin x)))/(e^(tan^(-1)(sin x)+e^(tan^(-1)(cos x)))dx is )

If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[cot^(-1){"sin"(tan^(-1)(cos e c(cos^(-1)a)))}]

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

If x = cosec[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[cot^(-1){"sin"(tan^(-1)(cos e c(cos^(-1)a)))}] show that x = y

lim_(x rarr0)(e^(x)-1-sin x-(tan^(2)x)/(2))/(x^(3))