Home
Class 12
MATHS
If f :[2,oo)rarr(-oo,4], where f(x)=x(4-...

If `f :[2,oo)rarr(-oo,4],` where `f(x)=x(4-x)` then find `f^-1(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(-oo,1]rarr(-oo,1] such that f(x)=x(2-x). Then find f^(-1)(x)

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x).

If f:[1, oo)rarr[2, oo) is given by f(x)=x+(1)/(x) then f^(-1)(x)=

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3/4.

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3/4.

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)

If f[1, oo)rarr[1, oo) is defined by f(x)=2^(x(x-1)) then f^(-1)(x)=