Home
Class 12
MATHS
[[(1-omega)(1-omega^(2))+---],[+(10-omeg...

[[(1-omega)(1-omega^(2))+---],[+(10-omega)(10-omega^(2))]}" equal to "(pi)/(900)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity,then value of expression cos[{(1-omega)(1-omega^(2))+...+(10-omega)(10-omega^(2))}(pi)/(900)]

If omega is a complex cube root of unity, then value of expression cos [{(1-omega)(1-omega^(2))+...+(12-omega)(12-omega^(2))}(pi)/(370)]

If omega is a complex cube root of unity, then value of expression cos[{(1-omega)(1-omega^2) +...+(10-omega) (10-omega^2)}pi/900]

If 1,omega,omega^(2) are cube roots of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) is equal to

If 1, omega , omega^(2) are the cube roots of unity then (1 + omega) (1 + omega^(2))(1 + omega^(4))(1 + omega^(8)) is equal to

If omega^(3)=1 and omega ne1 , then (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5)) is equal to

Prove that , {[{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega):}]+[{:(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1):}]}[{:(1),(omega),(omega^(2)):}]=[{:(0),(0),(0):}] where omega is the cube root of unit.