Home
Class 12
MATHS
" 10."(d^(2)y)/(dx^(2))=x+e^(x)...

" 10."(d^(2)y)/(dx^(2))=x+e^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

The solution of the equation (d^(2)y)/(dx^(2))= e^(-2x) is

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.

If y=e^(x)cos x, prove that t(d^(2)y)/(dx^(2))=2e^(x)cos(x+(pi)/(2))

If y=e^(x)cos x, prove that (d^(2)y)/(dx^(2))=2e^(x)cos(x+(pi)/(2))