Home
Class 12
MATHS
If cos theta > sin theta > 0, then evalu...

If `cos theta > sin theta > 0,` then evaluate : `int{log((1+sin2theta)/(1-sin2theta))^(cos^(2) theta)+log((cos2theta)/(1+sin2theta))} d theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta>sin theta>0, then evaluate : int{log((1+sin2 theta)/(1-sin2 theta))^(cos^(2)theta)+log((cos2 theta)/(1+sin2 theta))}d theta

(1-cos2theta)/(sin2theta)=

If costhetagtsinthetagt0 , then evaluate: int{log((1+sin2theta)/(1-sin2theta))^(cos2theta)+log((cos2theta)/(1+sin2theta))}d theta

If cos theta>sin theta>0 then I=int[ln[(1+sin2 theta)/(1-sin2 theta)]^(cos^(2)theta)+ln[(cos2 theta)/(1+sin2 theta)]]K sin2 theta ln[(cos theta+sin theta)/(cos theta-sin theta)]+m ln|cos2 theta|+c then k+m=

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta) =

sin2theta - cos2theta =1

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(sin^(2) theta)/(1-cos theta)-(cos^(2) theta)/(1-sin theta)=cos theta-sin theta