Home
Class 12
MATHS
lim(x->0)8/(x^8)(1-cos(x^2)/2-cos(x^2)/4...

`lim_(x->0)8/(x^8)(1-cos(x^2)/2-cos(x^2)/4+cos(x^2)/2cos(x^2)/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}

Evaluate: ("lim")_(xrarr0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}

Evaluate: ("lim")_(xrarr0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}

If lim_(x rarr 0)((1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4))/(x^8))=2^(-k) . Find k.

lim_(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)} is equal to

lim_(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)} is equal to

Evaluate: (lim)_(x rarr0)(8)/(x^(8)){1-cos((x^(2))/(2))-cos((x^(2))/(4))+cos((x^(2))/(2))cos((x^(2))/(4))}

Evaluate lim_(xto0) (8)/(x^(8)){1-"cos"(x^(2))/(2)-"cos"(x^(2))/(4)+"cos"(x^(2))/(2)"cos"(x^(2))/(4)}.