Home
Class 12
MATHS
The number of all continuous positive fu...

The number of all continuous positive functions `f` defined on the interval `[0, 1]` such that `int_0^1\ f(x)dx = 1;\ int_0^1\ f(x)* x\ d x = alpha and int_0^1\ f(x)*x^2\ dx= alpha^2 `(where `alpha` is a given real number)

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^1 f(x) dx = 1, int_0^1 xf(x) dx = a, int_0^1 x^2 f(x) dx = a^2 , then int_0^1 (a - x)^2 f(x) dx is equal to :

if int_0^1 f(x)dx=1,int_0^1 xf(x)dx=a and int_0^1 x^2f(x)dx=a^2 , then int_0^1(a-x)^2f(x)dx is equal to

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

If int_0^1 f(x) dx = 4 , int_0^2 f(t) dt = 2 and int_4^2 f(u) du = 1 then int_1^4 f(x) dx = ____

The number of positive continuous f(x) defined in [0,1] for with I_(1)=int_(0)^(1)f(x)dx=1,I_(2)=int_(0)^(1)xf(x)dx=a , I_(3)=int_(0)^(1)x^(2)f(x)dx=a^(2) is /are

Property 8: If f(x) is a continuous function defined on [-a; a] then int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx