Home
Class 11
MATHS
the sum3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)...

the sum`3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)+.......` upto 11 terms

Text Solution

Verified by Experts

Given,`3/(1^2 .2^2)+5/(2^2 .3^2)+7/(3^2 .4^2)+`
=`3/(1^2 .2^2)+5/(2^2 .3^2)+7/(3^2 .4^2)+...((2n+1)/(n^2.(n+1)^2))`
now`3/(1^2 2^2)=(2^2-1^2)/(1^2 2^2)=(1/1^2​)−(1/2^2​)`
similarly,`5/(2^2 .3^2)=(1/1^2​)−(1/3^2​)`
∴sum=`(1/1^2​)−(1/2^2​)+(1/2^2​)−(1/3^2​))+.......+[(1/n^2)−(1/(n+1)^2​)]`
=`1−(1/(n+1)^2​)=((n^2+2n​)/(n+1)^2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of first 20 terms of 3/1^2 + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) +... upto 20 terms is :

If the sum 3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)+. . . + upto 20 terms is equal to k/21, then k is equal to

3/(1^2 2^2)+5/(2^2 3^2)+7/(3^2 4^2)+ . . . upto 10th term

The sum of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto n terms,is

Find 1^2/1 + (1^2 + 2^2) / 2 + (1^2 + 2^2 + 3^2) / 3 + …..upto n terms.

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

Sum of first 20 terms of (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+... upto 20 terms is :

Sum of series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+... upto 22 terms is

The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+….+… is