Home
Class 12
MATHS
[" If "a!=b!=c," if "ax+by+c=0],[bx+cy+a...

[" If "a!=b!=c," if "ax+by+c=0],[bx+cy+a=0" and "cx+ay+b=0" are "],[" concurrent.Then the value of "],[2^(a^(2)b^(-1)c^(-1))2^(b^(2)c^(-1)a^(-1))2^(c^(2)a^(-1)b^(-1))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a!=b!=c, lf ax+by+c=0,bx+cy+a=0 and cx+ay+b=0 are concurrent.Then the value of 2^(a^(2)b^(-1)c^(-1))2^(b^(2)c^(-1)a^(-1))2^(c^(2)a^(-1)b^(-1))

If a ne b ne c and if ax+by+c=0, bx+cy+a=0, cx+ay+b=0 are concurrent then 2^(a^(2)b^(-1)c^(-1)).2^(b^(2)c^(-1)a^(-1))2^(c^(2)a^(-1)b^(-1))=

If the lines ax+by+c=0,bx+cy+a=0 and cx+ay+b=0 be concurrent,then:

If the lines ax + by + c = 0, bx + cy + a = 0 and cx + ay + b = 0 be concurrent, then:

The lines ax+by+c=0, bx+cy+a =0, cx+ay+b =0 are concurrent when-

If the lines ax+by+c=0, bx+cy+a=0 and Cx+ay+b=0 are concurrent (a+b+cne0) then

If the lines ax+by+c=0,bx+cy+a=0 and cx+ay+b=0a!=b!=c are concurrent then the point of concurrency is

If the lines x+ay+a=0, bx+y+b=0, cx+cy+1=0 (a!=b!=c!=1) are concurrent then value of a/(a-1)+b/(b-1)+c/(c-1)=