Home
Class 12
MATHS
If y=A e^(-k t)cos(p t+c), then prove th...

If `y=A e^(-k t)cos(p t+c),` then prove that `(d^2y)/(dt^2)+2k(dy)/(dx)+n^2y=0` , where `n^2=p^2+k^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=Ae^(-kt)cos(pt+c), then prove that (d^(2)y)/(dt^(2))+2k(dy)/(dx)+n^(2)y=0, where n^(2)=p^(2)+k^(2)

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

If y=int_0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf(x)

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .