Home
Class 12
MATHS
If p^2=a^2cos^2theta+b^2sin^2theta then...

If `p^2=a^2cos^2theta+b^2sin^2theta` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If p=a^2cos^2theta+b^2 sin^2 theta , where a^2+b^2=c^2 , then 4p+(d^2p)/(d theta^2) is equal to

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta then

if p^(2)=a^(2)cos theta+b^(2)sin^(2)theta then prove that (p+(d^(2)p)/(d theta^(2)))=(a^(2)b^(2))/(p^(3))

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta , show that, p+(d^(2)p)/(d theta^(2))=(a^(2)b^(2))/(p^(3)) .

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta , then show that : p+(d^(2)p)/(d theta^(2))=(a^(2)b^(2))/p^(3) .

If p^(2) = a^(2) cos^(2) theta + b^(2) sin^(2)theta , prove that p + (d^(2p)/(d theta^(2))) =(a^(2)b^(2))/p^(3)

Let f(theta) = sqrt(a^2cos^2theta+b^2sin^2theta) + sqrt(a^2sin^2theta+b^2cos^2theta) Minimum value of [f(theta)]^2

Let f(theta) = sqrt(a^2cos^2theta+b^2sin^2theta) + sqrt(a^2sin^2theta+b^2cos^2theta) Maximum value of [f(theta)]^2

If p=a cos^(2)theta sin theta and q=a sin^(2)theta cos theta then (((p^(2)+q^(2))^(3))/(p^(2)q^(2)) is

If a cos theta - b sin theta =c , then prove that a sin theta + b cos theta = +- sqrt(a^(2) + b^(2) - c^(2))