Home
Class 11
MATHS
lim(x->2)(x^9-512)/(x^4-16)=72...

`lim_(x->2)(x^9-512)/(x^4-16)=72`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show : underset(xrarr2)"lim"(x^(9)-512)/(x^(4)-16)=72

Evaluate the following lim_(xto2) (x -2)/(x^4-16)

lim_(x to2)((x^(3)-8)/(x^(4)-16))=

Evaluate : lim_(x to 2)(x^(10)-1024)/(x^(4)-16) , by using Formula.

If (lim)_(x->a)(x^9-a^9)/(x-a)=\ (lim)_(x->5)(4+x) find all possible values of adot

Evaluate the following limits : Lim_(x to 2) ((x^(8)-16)/(x^(4)-4) +(x^(2)-9)/(x-3))

If lim_(x->2^-) (ae^(1/|x+2|)-1)/(2-e^(1/(|x+2|)))= lim_(x->2^+)sin ((x^4-16)/(x^5+32)) , then a is

lim_(x->0)((4^x+9^x)/2)^(1/x)

Find the limits lim_(x to 4) (x^3 - 64)/(x^2 -16)

Find the following limits: lim_(xrarr2)(x^3-12x+16)/(3x^3-8x^2-4x+16)