Home
Class 12
MATHS
If |A|!=0 and (A-2I)(A-3I)=0 then A^(-1)...

If |A|`!=0` and `(A-2I)(A-3I)=0` then `A^(-1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to a. 0I b. 2I c. 6I d. I

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to a. 0I b. 2I c. 6I d. I

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to a. 0I b. 2I c. 6I d. I

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x

If A is a non-singular matrix and (A-3I)(A-5I)=0 then (1)/(8)A+(15)/(8)A^(-1) =......... (a) 0 (b) 2I (c) 8I (d) I.

If A^(2) + 5A + 3I =0, |A| ne 0 then A^(-1) =………………..

If A=[[i, 0], [0, (i)/(2)]] , then A^(-1)=

if A = [(I,0)(0,-i)] then show that A^(2) = -1 (i^(2)=-1) .

For 2 times 2 matrices A,B and I, if A+B=I and 2A-2B=I , then A equals 1) [[(1)/(4),0],[0,(1)/(4)]] 2) [[(1)/(2),0],[0,(1)/(2)]] 3) [[(3)/(4),0],[0,(3)/(4)]], 4) [[1,0],[0,1]]