Home
Class 12
MATHS
If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4...

If `a!=6,b,c` satisfy`|[a,2b,2c],[3,b,c],[4,a,b]|=0` ,then abc =

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ne b, b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =

If a ne 6, b , c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =

if abc!=0 and if |[a,b,c],[b,c,a],[c,a,b]|=0 then (a^3+b^3+c^3)/(abc)=

If a,b,c in R such that a^3+b^3+c^3=2 and |[a,b,c],[b,c,a],[c,a,b]|=0 then find abc

If abc!=0 and if |(a,b,c),(b,c,a),(c,a,b)|=0 then (a^(3)+b^(3)+c^(3))/(abc)=

Let a ,b , c in R such that no two of them are equal and satisfy |{:(2a, b, c),( b, c,2a),( c,2a, b):}|=0, then equation 24 a x^2+4b x+c=0 has

Prove that |[[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]]|= abc (a-b)(b-c)(c-a)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

Show that |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|=abc(a-b)(b-c)(c-a)