Home
Class 12
MATHS
underset( x rarroo ) ("lim") sec^(-1) ((...

`underset( x rarroo ) ("lim") sec^(-1) ((x)/( x+1)) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

underset( x rarroo)("lim") x {tan^(-1) ((x+1)/( x+2))-pi //4}=

underset( x rarr 1 ) ("lim") (1-x)/( 1-x^(2))=

If l = underset( x rarr 0) ("Lim")( x ( 1+ a cos x ) - bsin x ) /( x^(3))= underset( x rarr 0 ) ("Lim") ( 1+a cos x ) /( x^(2))- underset( x rarr 0 ) ("lim")( b sin x )/( x^(3)) , where l in R , then

underset( x rarr 0 ) ("Lim") [ ((1+x)^(1//x))/( e ) ]^(1//x)

underset( x rarr 0 ) ( "Lim") ((x- 1+ cos x )/( x))^((1)/( x))

For x gt 0, underset( x rarr 0) ( "Lim") [ ( sin x)^(1//x) + ((1)/( x))^("sinx ) ] is

The value of underset(xrarroo)(lim)x^(2)(1-cos.(1)/(x)) is

lim_(x rarr oo)sec^(-1)((x)/(x+1)) is equal to:

underset(xrarr1)"lim"(x-1)/(sqrt(x)-1)= ?

underset( x rarr 1 ) ( "Lim") ( x^(2) - x. ln x + ln x - 1)/( x - 1)