Home
Class 12
MATHS
u=int e^(ax)sin bxdx" and "v=int e^(ax)c...

u=int e^(ax)sin bxdx" and "v=int e^(ax)cos bxdx," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

If u=inte^(ax)sin " bx dx" and v=int(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals

int(e^(ax).cosbx)dx

Method of integration by parts : If u=inte^(ax)cos bx dx and v= int e^(ax) sin bx dx then (a^(2)+b^(2))(u^(2)+v^(2))=....

If u=inte^(ax)sin " bx dx" and v=int^(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals

int e^(ax)cos(bx+c)dx

int e^(sin x)cos xdx

inte^(ax)sin(bx+c)dx