Home
Class 12
MATHS
If f(x)=|(x^(3)-x,a+x,b+x),(x-a,x^(2)-x,...

If `f(x)=|(x^(3)-x,a+x,b+x),(x-a,x^(2)-x,c+x),(x-b,x-c,0)|` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = |(0, x-a, x-b),(x+a, 0, x-c),(x+b, x+c, 0)| , then the value of f(0) is :

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then "............"

If f(x)=|(0, x-a, x-b), (x+a, 0, x-c),(x+b, x+c, 0)| , then

Suppose a,b,c epsilon R and let f(x)=|(0,a-x,b-x),(-a-x,0,c-x),(-b-x,-c-x,0)| Then coefficient of x^(2) in f(x) is

If f(x)|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| then show that f(0)=0

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then

If f(x)=|(x+c_1,x+a,x+a),(x+b,x+c_2,x+a),(x+b,x+b,x+c_3)| then show that f(x) is linear in x. Hence deduce f(0)= (bg(a)-ag(b))/((b-a)) where g(x)=(c_1-x)(c_2-x)(c_3-x)

If f(x)=|(x+c_1,x+a,x+a),(x+b,x+c_2,x+a),(x+b,x+b,x+c_3)| then show that f(x) is linear in x. Hence deduce f(0)= (bg(a)-ag(b))/((b-a)) where g(x)=(c_1-x)(c_2-x)(c_3-x)