Home
Class 11
MATHS
If alpha and beta are roots of ax^2-bx ...

If `alpha` and `beta` are roots of `ax^2-bx + c = 0` , then `(alpha+1)(beta+1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

IF alpha , beta are the roots of ax^2+ bx + c=0 then (1)/(alpha ^3)+(1)/(beta ^3)=

IF alpha , beta are the roots of ax ^2 +bx +c=0 then (1)/(alpha ^2) +(1)/(beta^2)=

IF alpha , beta are the roots of ax^2+bx +c=0 then ((1)/(alpha ^2)-(1)/(beta ^2))^2=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha)+(1)/(beta) =

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

IF alpha , beta are the roots of ax^2+bx +c=0 then ((alpha )/(beta )-(beta )/( alpha ))^2 =

If alpha , beta are the roots of ax^2 + bx + c=0 then alpha beta ^(2) + alpha ^2 beta + alpha beta =

If alpha and beta are the roots of the equation ax^(2) + bx + c = 0 , then what is the value of the expression (alpha + 1)(beta + 1) ?