Home
Class 12
MATHS
किसी समांतर चतुर्भुज ABCD में यदि vec(AB...

किसी समांतर चतुर्भुज ABCD में यदि `vec(AB)=bara` तथा `vec(BC)=barb` तो सिद्ध कीजिए कि
`vec(AC)=bara+barb` और `vec(BD)=barb-bara`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

If ABCD is a parallelogram and vec AB = vec a , vec BC= vec b then show that vec AC = vec a+ vec b and vec BD = vec b- vec a .

Prove that (bar(A.B)).(A+B)=A.barB+barA.B

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

In a trapezium ABCD vec(AB)=3hati, vec(AD)=hati+2hatj ,vec(DC)=2hati . Find vec(BC),vec(BD),vec(AC) and angleBAD .