Home
Class 12
MATHS
If f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/...

If `f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/2` is continuous at `x=pi/2,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(mx+1,xle(pi)/(2)),(sinx+n,xgt(pi)/(2)):} is continuous at x=(pi)/(2) . Then which one of the following is correct?

If f(x) {(mx + 1,x le (pi)/(2)),((sin x)+ n,x gt (pi)/(2)):} is continuous at x= (pi)/(2) , then …...

If f(x)={m x+1\ \ \ ,\ \ \ xlt=pi/2,\ \ \ \ \ \sinx+n\ \ \ ,\ \ \ x >pi/2 is continuous at x=pi/2 , then

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then find the relation between m and n.

Let f(x) = [sinx] , is f continuous at x = pi/2

If f(x)={m x+1\ \ \ ,\ \ \ xlt=pi/2,\ \ \ \ \ \sinx+n\ \ \ ,\ \ \ x >pi/2 is continuous at x=pi/2 , then m=1,\ \ n=0 (b) m=(npi)/2+1 (c) n=(mpi)/2 (d) m=n=pi/2