Home
Class 12
MATHS
Prove that cos (alpha+beta) +sin (alph...

Prove that
`cos (alpha+beta) +sin (alpha-beta)=2sin(pi/4+alpha)cos(pi/4+beta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cos alpha-cos beta)^2+(sin alpha-sin beta)^2=4sin^2((alpha-beta)/2)

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Prove that (cos2 alpha-cos 2 beta)/(sin2 alpha+sin2 beta)=tan(beta-alpha)

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| The value of l=int_(0)^(pi//2)e^(beta)(f(0,0)+f((pi)/(2),beta)+f((3pi)/(2),(pi)/(2)-beta))dbeta is

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

Find the value of f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)|