Home
Class 12
MATHS
Statement 1: Line (x-1)/1=(y-0)/2=(z2)/(...

Statement 1: Line `(x-1)/1=(y-0)/2=(z2)/(-1)` lies in the plane `2x-3y-4z-10=0.` Statement 2: if line ` vec r= vec a+lambda vec b` lies in the plane ` vec rdot vec c=n(w h e r en` is scalar`),t h e n vec bdot vec c=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: Line (x-1)/1=(y-0)/2=(z+2)/(-1) lies in the plane 2x-3y-4z-10=0. Statement 2: if line vec r= vec a+lambda vec b lies in the plane vec rdot vec c=n(w h e r en is scalar ),t h e n vec bdot vec c=0.

Statement 1: Line (x-1)/1=(y-0)/2=(z+2)/(-1) lies in the plane 2x-3y-4z-10=0. Statement 2: if line vec r= vec a+lambda vec b lies in the plane vec r. vec c=n (where n is scalar),then vec b. vec c=0. (a) Both the statements are true, and Statement 2 is the correct explanation for Statement 1. (b) Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1. (c)Statement 1 is true and Statement 2 is false. (d) Statement 1 is false and Statement 2 is true.

Write the position vector of the point where the line vec r= vec a+lambda vec b meets the plane vec r dot (vec n)=0.

Write the position vector of the point where the line vec r= vec a+lambda vec b meets the plane vec r dot (vec n)=0.

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

If vec axx vec b= vec bxx vec c!=0,\ then show that vec a+ vec c=m vec b ,\ w h e r e\ m is any scalar.

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=sqrt3a n d| vec b|=sqrt2. Then vec r =?

The equation of the plane containing the lines vec r = vec (a_1) + lambda vec b and vec r = vec (a_2) + mu vec b is.............

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b