Home
Class 11
MATHS
For x in (0, pi/2) and sin x = 1/3 if ...

For `x in (0, pi/2) and sin x = 1/3` if `sum_(n=0)^oo sin(nx)/3^n=(a+bsqrtb)/c` then the value of `(a + b + c)`.is k (where a, b, care positive integers. ) then find the sum of digits in `k` (You may use the fact that `sin x =(e^(ix) -e^(-ix))/(2i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n in N, sum_(k=1)^(n)sin^(-1(x_(k))=(npi)/2 then the value of sum_(k=1)^(n)x_(k)=

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If sin^3x sin3x= sum_(n=0)^6 c_n cos^n x where c_0, c_1, c_2,...c_6 are constants. then find the value of c_4

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

If int_(0)^( pi)|2sin x+3cos x|dx=sqrt(k) where k in N, then find the value of k.