Home
Class 12
MATHS
Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4...

Prove that : `tan^(-1)2+tan^(-1)3=(3pi)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)2+tan^(-1)3=(3 pi)/(4)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1) (1/2 ) + tan^(-1) (1/3) = pi/4

Prove that : tan ^(-1) ""(1)/(2) = (pi)/(4) - tan ^(-1) ""(1)/(3)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that: tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi