Home
Class 12
MATHS
If x=1+loga bc, y=1+logb ca, z=1+logc ab...

If `x=1+log_a bc, y=1+log_b ca, z=1+log_c ab` then prove that `xyz=xy+yz+zx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=1+(log)_a b c , y=1+(log)_b c a and z=1+(log)_c a b , then prove that x y z=x y+y z+z x

IF x=1+log_abc,y=1+log_bca,z=1+log_cab , prove that xyz=xy+yz+zx.

If =1+log_(a)(bc);y=1+log_(b)(ac);z=1+log_(c)(ab) then prove that xyz=xy+yz+zx

If x=1 + log_(a)(bc) , y=1 +log_(b)(ca) and z=1+ log_(c )(ab) prove that xy+yz+zx=xyz

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to