Home
Class 13
MATHS
[" Let "[.]" represent the greatest inte...

[" Let "[.]" represent the greatest integer function and "f(x)=[tan^(2)x]" then "],[[" (a) "lim f(x)" does not exist "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [] donots the greatest integer function and f (x)= [tan ^(2) x], then

If [x] represents the greatest integer function and f(x)=x-[x]-cos x" then "f^(1)(pi/2)=

Let f(x) = [x] and [] represents the greatest integer function, then

Let f(x) = [x] and [] represents the greatest integer function, then

Let [.] represents the greatest integer function and [cos^(-1)sin^(-1)tan^(-1)x]=1 then 'x' lies in the intervel.

If [x] represents the greatest integer function and f(x) = x - [x] - cos x, then f’((pi)/2) =

Let [*] representes the greatest integer function and [cos^(-1)(tan^(-1)x)]=2, then the maximum value of x is