Home
Class 11
MATHS
[" If "a,b,c" be in H.P.,then "],[[" (a)...

[" If "a,b,c" be in H.P.,then "],[[" (a) "a^(2)+c^(2)>b^(2)," (b) "a^(2)+b^(2)>2c^(2)],[" (c) "a^(2)+c^(2)>2b^(2)," (d) "a^(2)+b^(2)>c^(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in H.P., then (c^(2)(b-a)^(2)+a^(2)(c-b)^(2))/(b^(2)(a-c)^(2)) =

If a,b,c,d are in G.P.then (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in

If a,b,c,d are in H.P then value of (a^(-2)-d^(-2))/(b^(-2)-c^(-2)) is

If a, b, c and d are in G.P., show that, (b-c)^(2) + (c-a)^(2)+ (d-b)^(2) = (a-d)^(2) .

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a,b,c are in H.P , b,c,d are in G.P and c,d,e are in A.P. , then the value of e is (a) (ab^(2))/((2a-b)^(2)) (b) (a^(2)b)/((2a-b)^(2)) (c) (a^(2)b^(2))/((2a-b)^(2)) (d) None of these

If a,b,c are in H.P , b,c,d are in G.P and c,d,e are in A.P. , then the value of e is (a) (ab^(2))/((2a-b)^(2)) (b) (a^(2)b)/((2a-b)^(2)) (c) (a^(2)b^(2))/((2a-b)^(2)) (d) None of these

If a ,b,c , d are in G.P. prove that (a-d)^(2) = (b -c)^(2)+(c-a)^(2) + (d-b)^(2)

If a, b, c and d are in G.P., show that, a^(2) + b^(2), b^(2) + c^(2), c^(2) + d^(2) are in G.P.