Home
Class 11
MATHS
If x=(1)/(2)(sqrt(7)+(1)/(sqrt(7))) ,the...

If `x=(1)/(2)(sqrt(7)+(1)/(sqrt(7)))` ,then ,`log_(27)((sqrt(x^(2)-1))/(x-sqrt(x^(2)-1)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1)/(2)(sqrt(a)+(1)/(sqrt(a))) , then show that (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=(a-1)/(2) .

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

lim_(xrarrinfty)(sqrt(x^2-2x-1)-sqrt(x^2-7x+3)) is equal to

lim_(x rarr1)(3sqrt(7+x^(3))-sqrt(3+x^(2)))/(x-1) is equal to

int x(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx equals

Evaluate int(log_(e)(x+sqrt(x^(2)+1)))/(sqrt(x^(2)+1))dx.

The value of int(log_(e)(x+sqrt(x^2)+1))/(sqrt(x^(2)+1))dx is

int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx is equal to

If x = sqrt(7)+(1)/(sqrt(7)) , then the value of (128)^(x^(2)) is-

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to