Home
Class 11
MATHS
The value of the expression cos(pi/2-x)c...

The value of the expression `cos(pi/2-x)cos((3pi)/2+x)-cos(pi-x)cos(2pi-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (tan(x-pi/2)cos((3pi)/2+x)-sin^3((7pi)/2-x))/(cos(x-pi/2)tan((3pi)/2+x) is equal to

The value of "cos"((3pi)/2+x)."cos"(2pi+x)["cot"((3pi)/(2)-x)+"cot"(2pi+x)] is

If the expression cos(x-3(pi)/(2))+sin(3(pi)/(2)+x)+sin(32 pi+x)-18cos(19 pi-x)+cos(56 pi+x)-sin(x+17 pi) is expressed in the form of a sin x+b cos x, then a+b is equal to

If the expression cos(x - 3pi/2) + sin(3pi/2+x) + sin(32pi+x) - 18 cos(19pi-x)+cos(56pi+x) - 9sin(x+17pi) is expressed in the form of a sinx + bcos x , then a+b is equal to

The value of the integral int_(-(pi)/(2))^((pi)/(2))(x^(2)+ln((pi+x)/(pi-x)))cos xdx is

Prove that cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

The value of cos ((3pi)/2 + x)cos (2pi + x){cot ((3pi)/2 - x) + cot (2pi + x)} is-

Prove that: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1