Home
Class 11
MATHS
Let A, B, C be three sets of complex num...

Let A, B, C be three sets of complex numbers as defined below. ` A = { z : |z+1| <= 2 + Re(z)}, B = { z : |z-1| >=1} and C = { z : |(z-1)/(z+1)|>=1}`

Promotional Banner

Similar Questions

Explore conceptually related problems

A,B,C be three sets of complex number as defined below : A = {z : "In" z ge 1} , B = {z :| z - 2 - I | = 3 } " and " C = {z : Re ((1 - i)z) = sqrt(2)) Let z be any point in A nn B nn C . The |z + 1 - i|^(2) + |z - 5 -i|^(2) lies between :

Let A,B,C be three sets of complex number as defined below A={z:lm (z) ge 1} B={z:|z-2-i|=3} C={z:Re((1-i)z)=sqrt(2)} Let z be any point in A cap B cap C and let w be any point satisfying |w-2-i|lt 3 Then |z|-|w|+3 lies between

Let A, B, C be three sets of complex number as defined below: A={z:Imge1}, B={z:|z-2-i|= 3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set AnnBnnC is

Let A, B, C be three sets of complex number as defined below: A={z:Imge1}, B={z:|z-2-i|= 3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set AnnBnnC is

Let A, B, C be three sets of complex number as defined below: A={z:Imge1}, B={z:|z-2-i|= 3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set AnnBnnC is

Let A,B,C be three sets of complex number as defined below: A={z:Im>=1},B={z:|z-2-i|=3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set A nn B nn C is

Let A,B and C be three sets of complex numbers as defined below: {:(,A={z:Im(z) ge 1}),(,B={z:abs(z-2-i)=3}),(,C={z:Re(1-i)z)=sqrt(2)"where" i=sqrt(-1)):} Let z be any point in A cap B cap C . Then, abs(z+1-i)^(2)+abs(z-5-i)^(2) lies between

Let A,B and C be three sets of complex numbers as defined below: {:(,A={z:Im(z) ge 1}),(,B={z:abs(z-2-i)=3}),(,C={z:Re(1-i)z)=3sqrt(2)"where" i=sqrt(-1)):} Let z be any point in A cap B cap C . Then, abs(z+1-i)^(2)+abs(z-5-i)^(2) lies between