Home
Class 12
MATHS
Line a x+b y+p=0 makes angle pi/4 with...

Line `a x+b y+p=0` makes angle `pi/4` with `xcosalpha+ysinalpha=p ,p in R^+` . If these lines and the line `xsinalpha-ycosalpha=0` are concurrent, then `a^2+b^2=1` (b) `a^2+b^2=2` `2(a^2+b^2)=1` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Line a x+b y+p=0 makes angle pi/4 with xcosalpha+ysinalpha=p ,p in R^+ . If these lines and the line xsinalpha-ycosalpha=0 are concurrent, then (a) a^2+b^2=1 (b) a^2+b^2=2 (c) 2(a^2+b^2)=1 (d) none of these

Line ax+by+p=0 makes angle (pi)/(4) with x cos alpha+y sin alpha=p,p in R^(+). If these lines and the line x sin alpha-y cos alpha=0 are concurrent,then a^(2)+b^(2)=1( b) a^(2)+b^(2)=22(a^(2)+b^(2))=1( d) none of these

The line xcosalpha +ysinalpha=p will be a tangent to the circle x^2+y^2-2axcosalpha-2aysinalpha=0 if p=

If the lines ax+ by+p=0 , xcosalpha+ysinalpha-p=0(p!=0) and xsinalpha-ycosalpha=0 are concurrent and the first two lines include an angle pi/4 , then a^2+b^2 is equal to

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

If the lines a x+2y+1=0,b x+3y+1=0a n dc x+4y+1=0 are concurrent, then a ,b ,c are in (a). A.P. (b). G.P. (c). H.P. (d). none of these

If the lines a x+2y+1=0,b x+3y+1=0a n dc x+4y+1=0 are concurrent, then a ,b ,c are a. A.P. b. G.P. c. H.P. d. none of these