Home
Class 12
MATHS
In triangle ABC, prove that a(cosC-cosB...

In `triangle ABC`, prove that `a(cosC-cosB)=2(b-c)cos^2.(A)/(2)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

a(cosC-cosB)=2(b-c)cos^2A/2

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)

For any triangle ABC, prove that a(cosC-cos B)\ =\ 2\ (b - c)\ cos^2(A/2)

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2

In any DeltaABC , prove that a(cosC-cosB)=2(b-c)cos^(2)""1/2A

In as triangle ABC prove that: cos (A+B)+cosC=0

In Delta ABC prove that a(cosB + cosC) = 2(b+c) sin^2(A/2)

In any triangle ABC , prove that a(cosB+cot(A/2).sinB)=b+c .

In DeltaABC , prove that: a(cosB+cosC)=2(b+c)sin^(2)A/2 .