Home
Class 12
MATHS
Let vec a,vecb,vec c be three vectors ...

Let `vec a,vecb,vec c` be three vectors such that `vec a != 0, and vec a xx vec b=2vec a xx vec c,|veca|=|vec c|=1,|vec b|=4|vec axx vec c|=sqrt15` If `vec b-2vec c=lambda vec a`, then `lambda` equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec ba n d vec c be three verctors such that vec a!=0,| vec a|=| vec c|=1,| vec b|=4 and | vec bxx vec c|=sqrt(15)dot If vec b-2 vec c=lambda vec a , then find the value of lambda

Let vec a , vec ba n d vec c be three verctors such that vec a!=0,| vec a|=| vec c|=1,| vec b|=4 and | vec bxx vec c|=sqrt(15)dot If vec b-2 vec c=lambda vec a , then find the value of lambda

Let vec a,vec b and vec c be three verctors such that vec a!=0,|vec a|=|vec c|=1,|vec b|=4 and |vec b xxvec c|=sqrt(15). If vec b-2vec c=lambdavec a, then find the value of lambda

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

Let vec(a), vec(b), vec(c ) be three vectors satisfying vec(a) xx vec(b) = 2vec(a) xx vec(c ), |vec(a)| = |vec(c )| =1, |vec(b)|=4 and |vec(b) xx vec(c )|= sqrt15 . If vec(b)- 2vec(c )= lamda vec(a) , find the value of lamda .

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a,vec b,vec c are any three vectors, prove that vec a xx (vec b xx vec c) +vec b xx(vec c xx vec a)+ vec c xx(vec a xx vec b) = vec 0

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

vec(a),vec(b) and vec( c ) are three vector vec(a)ne0 and |vec(a)|=|vec( c )|=1,|vec(b)|=4,|vec(b)xx vec( c )|=sqrt(15) . If vec(b)-2vec( c )=lambda vec(a) then the value of lambda is ………….