Home
Class 12
MATHS
2(sina+sinb)x-2sin(a-b)y=3 and 2(cosa+co...

`2(sina+sinb)x-2sin(a-b)y=3` and `2(cosa+cosb)x+2cos(a-b)y=5` are perpendicular then `sin2a+sin2b=`

Promotional Banner

Similar Questions

Explore conceptually related problems

2(sin a+sin b)x-2sin(a-b)y=3 and 2(cos a+cos b)x+2cos(a-b)y=5 are perpendicular then sin2a+sin2b=

sin(A-B)=sinA cos B-cosA sinB

If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b , xsinc+ysin2c+zsin3c=sin4c , then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are (a) sina ,sinb ,sinc (b) cosa ,cosb ,cosc (b) sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c

If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b , xsinc+ysin2c+zsin3c=sin4c , then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are (a) sina ,sinb ,sinc (b) cosa ,cosb ,cosc (c) sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c

If xsina+ysin2a+zsin3a=sin4a , xsinb+ysin2b+zsin3b=sin4b , xsinc+ysin2c+zsin3c=sin4c , then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are (a) sina ,sinb ,sinc (b) cosa ,cosb ,cosc (c) sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c

If xsina+ysin2a+zsin3a=sin4a , xsinb+ysin2b+zsin3b=sin4b , xsinc+ysin2c+zsin3c=sin4c , then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are (a) sina ,sinb ,sinc (b) cosa ,cosb ,cosc (c) sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c

If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b , xsinc+ysin2c+zsin3c=sin4c , then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are (a) sina ,sinb ,sinc (b) cosa ,cosb ,cosc (c) sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c

If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b , xsinc+ysin2c+zsin3c=sin4c , then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are (a) sina ,sinb ,sinc (b) cosa ,cosb ,cosc (c) sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c

Prove that: (sin(A+B)-2sinA+sin(A-B))/(cos(A+B)-2cosA+cos(A-B))= tanA

Prove that: (sin(A+B)-2sinA+sin(A-B))/(cos(A+B)-2cosA+cos(A-B))= tanA