Home
Class 12
MATHS
Find the value of "cos"(2cos^(-1)x+sin^(...

Find the value of `"cos"(2cos^(-1)x+sin^(-1)x)` at `x=1/5,` where `0lt=pi` and `-pi/2lt=sin^(-1)xlt=pi/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)

Find the values of cos(2cos^(-1)x+sin^(-1)x) at x = 1/5, where 0 le cos^(-1)x le pi and -pi//2 le sin^(-1)x le pi//2 .

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

The values of Sin^(-1)(cos{Cos^(-1)(cosx)+Sin^(-1)(sinx)})" where "x in (pi/2, pi) is

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

cos (2cos ^(-1) x+sin ^(-1) x) , " when " x=(1)/(5) where 0 le cos ^(-1) x le pi , -(pi)/(2) le sin ^(-1)""xle(pi)/(2)

Solve the equation sqrt(|sin^(-1)|"cosx"||+|cos^(-1)|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot

Find the derivative of cos^(-1)((sin x +cos x)/(sqrt(2))),(-pi)/(4)lt x lt (pi)/(4) .