Home
Class 12
MATHS
If f(x)=xe^(-x^2 tan^2x)+e^x-e^(-x), th...

If `f(x)=xe^(-x^2 tan^2x)+e^x-e^(-x)`, then the value of `f(2018) + f(-2018)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log_4((2f(x))/(1-f(x))) then the value of f(2018)+f(-2017) is equal to

If f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 , then the value of f^(-1)(x) is -

If f (x) =(e^(x) -e ^(-x))/( e ^(x) +e^(-x)) +2, then the value of f ^(-1) (x) is-

If f(x)=e^(x) , then the value of 7 f (x) will be equal to

Let f:R rarr R be defined as f(x)=7e^(sin^(2)x)e^(cos^(2)x)+2, then the value of sqrt(7f_(min))+f_(max) is equal to

IF f(x) = tan x+e^(-2x)-7x^(3) , then what is the value of f'(0)?

If f(x)=x.e^(x(1-x), then f(x) is

If f(x)=x.e^(x(1-x), then f(x) is

If f(x)=x.e^(x(1-x), then f(x) is